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High-resolution simulation of inviscid �ow in general domains
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SUMMARY

In this paper, a high-resolution �nite volume method for calculating solutions to a hyperbolic con-
servation law is presented. The method works in two space dimensions on general domains and uses
curvilinear meshes. A non-trivial estimation of gradients needed for the reconstructions is presented.
The paper contains examples of numerical solutions of the Euler gas dynamics equations. Copyright ?
2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Inviscid �ows are modelled by hyperbolic conservation laws. In numerical computations,
‘conservation’ is simulated in computational cells; this is the concept of �nite volume (FV)
schemes. FV-schemes approximate local averages in these cells, and these averages are de-
termined cell wise by the �ux balance across the cell boundaries. To achieve a reasonable
accuracy of the solution, some reconstruction of the unknown pro�le of the �ux in each cell
is needed. In Reference [1], Marquina presented a hyperbolic ansatz for the reconstruction,
which is extended to work on domains of general shapes in two space dimensions. These gen-
eral domains yield non-Cartesian, quadrilateral meshes, so the method presented here handles
these cases.
The ansatz for the reconstruction of �uxes reads

r(x; y) = a+
b

x − x0 + c +
d

y − y0 + e (1)
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where (x0; y0) is the cell centre and the remaining �ve parameters are determined such that
the cell average a is preserved, and certain directional derivatives along all four edges are
prescribed (see Reference [2]). Thus, gradients need to be determined from the known cell
averages. This is established as follows.

NUMERICAL GRADIENTS

Based on discrete data f(pi) available in the centre pi ∈ Ci ⊂ R2 of quadrilateral cells, the
goal is to determine the gradient ∇f( �p) on a given boundary point �p ∈ @Ci. By a linear
combination of data from neighbouring cells

∑
i
�if(pi) = fx( �p) + O(�2) (2)

the x-derivative is approximated up to second order, for example. Here, � is the size of a
cell side. To eliminate the leading order term in the expansion

f(x; y) =f( �p) + fx( �p)(x − �x) + fy( �p)(y − �y)

+1
2fxx( �p)(x − �x)2 + fxy( �p)(x − �x)(y − �y)

+1
2fyy( �p)(y − �y)2 + O(‖p− �p‖3)

clearly, the coe�cients have to sum up to zero

∑
i
�i = 0 (3)

Moreover, to approximate fx( �p) and to eliminate the remaining four error terms the conditions
are

�rst order:
∑
�i(xi − �x) = 1;

∑
�i(yi − �y) = 0

second order:
∑
�i(xi − �x)2 =

∑
�i(xi − �x)(yi − �y) =

∑
�i(yi − �y)2 = 0

(4)

In the present work, these six order conditions are satis�ed using a six-point stencil as shown
in Figure 1. Given the mesh, the coe�cients �i are numerically computed from the linear
system A� = b representing the order conditions (3) and (4) and stored during the rest of
the computation.
There is some freedom in choosing the six-point stencil; however, one has to make sure

that A is regular throughout the mesh. In the Cartesian case, the stencil selected above leads
to a regular system for � with unique solution � = (0;−1=2h; 1=2h; 1=2h;−1=2h; 0)T for all
positive step sizes h. Formula (2) reduces to an average of two central di�erences in this
case. This argument shows also that for moderately non-Cartesian meshes, formula (2) is still
uniquely determined.
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Figure 1. Chosen stencil.

HYPERBOLIC RECONSTRUCTION A LA MARQUINA

Given averages of an unknown function f

vj =
1
�x

∫ xj+1=2

xj−1=2

f(�) d�

on an equidistant mesh in one space dimension, the following three conditions

dj−1=2 =
vj − vj−1
�x

= r ′(xj−1=2) (5)

vj =
1
�x

∫ j+1=2

j−1=2
r(�) d� (6)

dj+1=2 =
vj+1 − vj
�x

= r ′(xj+1=2) (7)

de�ne a third-order accurate reconstruction r within the actual cell Cj = [xj−1=2; xj+1=2) such
that

|r(�)− f(�)| = O(�x3); � ∈ Cj
See Reference [2] or [3].
Marquina [1] established a hyperbolic reconstruction based on this principle

rMj (x) = aj +
bj

x − xj + cj (8)

Whenever the given data are monotonic (dj+1=2dj−1=2¿ 0), there is a unique (monotonic)
hyperbola satisfying (5)–(7). Otherwise, in transition cells, the lateral derivative with largest
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absolute value is replaced by the other one multiplied by �x2. In this way, the order of
accuracy drops to two in transition cells.
This local hyperbolic reconstruction is quite successful in 1D, see References [1, 3–5]. Here,

we present an extension to 2D in the following way.
Consider a generic cell with central point p0, see Figure 1. Imagine a local co-ordinate

system such that the corners of the cell appear in di�erent quadrants. In this situation, the
unknown quantity is reconstructed by the bi-hyperbolic ansatz (1) along the local co-ordinate
system. For simplicity, we perform two 1D-reconstructions in x- and y-direction, respectively.
Partial derivatives in the boundary points �p on all four edges are approximated as described
in the previous section. Then it is straightforward to apply Marquina’s 1D algorithm in both
co-ordinate directions. The result is a bi-hyperbolic reconstruction (1), which is third-order
accurate along both co-ordinate directions. Note, however, that third-order accuracy cannot be
expected throughout the whole generic non-Cartesian cell. This is due to the following reason:
the 1D-reconstructions preserve the 1D-averages along both co-ordinate axes. Therefore, the
given average within the 2D computational cell equals the average of reconstruction (1) within
the dotted rectangle in Figure 1, which di�ers from the cell average of (1). In rectangular
cells of course, this e�ect is irrelevant and full third order is achieved. Otherwise, the average
could be �xed by adjusting the constant a in (1). The integration is tedious, however, and
numerical results do not justify the e�ort.

FLUX BALANCING AND TIME INTEGRATION

The dynamics of the �ow is governed by the �ux balance along the boundary of computational
cells Ci ⊂ � ⊂ R2,

d
dt

∫
Ci
U (t; z) dz +

∫
@Ci
F(U (t; z)) · n dS = 0

Here, z = (x; y) ∈ R2 and n denotes the outward normal along the boundary @Ci.
In a numerical simulation on quadrilateral cells, the normal �ux F(U ) · n needs to be

integrated along all four edges of each cell. To determine the �ux on the interface, we apply
a �ux splitting formula, which in the case of the Euler equations is van Leer’s splitting [6].
The partial �uxes F± are reconstructed according to the previous section, and the normal �ux
F(U ) · n is integrated along the edge using a standard quadrature rule. Finally, to advance
the solution in time, the �ux balance is integrated using the third order non-linear SSP-RK
scheme in Reference [7], Section 4.1.

NUMERICAL RESULTS

Shock–bubble interaction

Initially investigated experimentally by Haas and Sturtevant [8], the shock–bubble experiment,
where a shock wave in air impinges on a bubble of helium has drawn the attention for
numerical tests (Figure 2). The gases are assumed to be perfect and governed by Euler’s
equations for a 2D, compressible gas �ow. To describe the two di�erent components of
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Figure 2. Initial con�guration for the shock-bubble experiment.

Table I. Mean velocities for the shock–bubble experiment.

Vs Vr Vt Vui(1) Vui(2) Vdi Vj

Bi-hyp scheme 414 936 374 181 118 143 230
Marquina and Mulet 414 943 373 176 111 153 229
Percentage error 0 0.8 −0.3 −2.8 −5.9 7.0 −0.4
Haas and Sturtevant 410 900 393 170 113 145 230
Percentage error −1.0 −3.9 5.1 −6.1 −4.2 1.4 0

gas, the system is augmented with a �fth conserved variable, here the mass-fraction �. The
complete model is described in detail in Reference [9]:

Ut + F(U )x +G(U )y = 0; U = (�; �u; �v; E; ��)T

F(U ) = (�u; �u2 + P; �uv; (E + P)u; ��u)T; G(U ) = (�v; �uv; �v2 + P; (E + P)v; ��v)T

The ratio of speci�c heats of the mixture of gases is

�(�) =
Cp1�+ Cp2(1− �)
Cv1�+ Cv2(1− �)

and the equation of state reads P = (�(�)− 1)(E − �(u2 + v2)=2.
Given this formulation in conservation form, �nite volume methods as described above are

applicable provided a splitting of the �ux (F;G)T is available. Like in Reference [9] we apply
Marquina’s splitting from Reference [10]. The bi-hyperbolic reconstruction resolves the �ow
quite well. In Table I we display the velocities for certain �ow features such as the speed of
the shock waves (Vs: incident shock, Vr: refracted shock, Vt; transmitted shock), the interface
of the bubble (Vui, Vdi: upstream resp. downstream border of the bubble) and the air jet
head (Vj). Notations are taken from Reference [9], where more details can be found.
The results are well within the estimated error bounds of 10% for the experiment [8] and we

note the close agreement with the numerical results from Marquina and Mulet [9], although
their results are obtained from a �fth-order WENO scheme on a grid of 8000 × 800 points
compared to our third-order method on 3000×300 points. Still, the bi-hyperbolic reconstruction
prescribes enough numerical viscosity to avoid pressure �uctuations at the interfaces between
the regions of di�erent gases, a well-known problem for conservative schemes.
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Figure 3. Density contours at t = 0:26 s with and without reconstruction.

Figure 4. Density contours at t = 0:45 s with and without reconstruction.

Triangular obstacle

A strong air shock wave travels against a re�ective triangular obstacle; see Figures 3 and 4.
Due to the geometry of the domain, it is suitable to use non-Cartesian cells around the
triangle. Simulations both with and without reconstructions are compared, and one sees a
clear improvement in the resolution for the simulation using bi-hyperbolic reconstruction.
Both simulations have been performed on parallel computers using 130 000 grid cells.
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